Definition of Relationship

Definition Last Updated 17-Dec-2015 12:51

A relationship is a correspondence between sets of attributes of entities, either two or more sets belonging to a single entity or sets belonging to multiple entities, such that, according to the application of a rule the value of one set of attributes determines the values of others.

A relationship is not a direct correspondence between entities, even though diagrammatic representations of relationships might suggest this, nor is it a contingent relation between attribute values, i.e. a relation, such as “>” in “A > B”

Relationships typically express linguistic and logical truths such as, “If A is the father of B, then B is a child of A.”

Scope

Relationship is a defined term of Enterprise Architecture. Relationships is a defined term of Business Analysis.

Discussion

Article Last Updated 17-Dec-2015 12:51

Examples

Between a Pair of Entities

“I have a dog called Fido.” expresses the relationship I have the attribute owns-a-dog-named with the value Fido, and the dog called Fido has an attribute has-an-owner-named whose value is Julian related via the rule that in the inverse of owns is owned-by.

Between a Attributes Belonging to Single Entity

“If entity width > entity height then entity is broad.” Increasing the height until it is greater than the width, or decreasing the width until it is less than the height would negate the attribute is broad.

Among a Group of Entities

“Sarah threw the fish to the orca,” may be transformed into “The orca was thrown the fish by Sarah,” and “The fish was thrown to the orca by Sarah, and “The fish was thrown by Sarah to the orca.”1Not forgetting other constructions such as, “To the orca was the fish thrown by Sarah” or “To the orca, the fish, by Sarah, thrown was,” “The fish, to the orca, by Sarah, thrown was,” etc. that all embody the same relationship between instances of entities thrower, thrown and catcher. Complicated it can be.

More Formally

In terms of the notion of predicate, which, according to the precepts of modern theories of grammar and syntax2See Predicates in Modern theories of syntax and grammar, acts as a function that serves either to assign a value or to relate two or more arguments together, a relationship is a permutable function f({a, b, …}) of two or more ordered arguments, i.e. that there exists some related function f′ (typically an inversion, in the case of bivalued predicates) such that for f(a,b,c…) there is a natural meaning to f′(perm({a,b,c})) where perm() is a particular permutation of the arguments.

Example

Thus, if f() = is-father-of, such that the ordering of f(Adam, Seth) means Adam is the father of Seth, then the inversion f′ = is-son-of is valid if the arguments are swapped, i.e. f(Adam, Seth) ⇔ f′(Seth, Adam).

Using this approach it is also possible to construct more complex, meaningful relationships between entities, such as the following.

Let g() = recommended-book-to, with the ordering of g(Mary, Oliver Twist, Julian) meaning Mary recommended the book Oliver Twist to Julian, so that we may obtain g′ = book-was-recommended-by-to i.e. g′(Oliver Twist, Mary, Julian), and even g″ = was-recommended-book-by, i.e. g(Julian, Oliver Twist, Mary).

Contrast the descriptions of Julian and Fido as “owns a dog named Fido” and “is owned by Julian” respectively with the situation in which I am described as having the logical (Boolean) attribute is-dog-owner with value True and Fido as having the attribute is-owned-dog with value True.

These descriptions do not express a relationship because the attributes do not specify a target entity, thus should I cease to be a dog owner, there is no way to tell which dog has ceased to be3i.e. ceased to be in the sense that Fido is now an ex-dog, or ceased to be a dog in the case that Fido has been magically transformed into a cat., has been sold on, dognapped or wandered off a long time ago.

Diagram

The diagram below illustrates the nature of relationships.

7V1ZW9tIs/4t54LnzHeBnt6XSzAhw3yQZZKZzOTOgDFOvHBsE0J+/emWuuUqLSAZmZ0kxFZJrV7eWru6e4v3Jj/fzvsX50ez08F4i5H5YDH6Ndjie1uMUffPXbroT7PvJPt+Nloi+unP8JULFq5cZ1eMUtmF4Xx0ip7xFz6tXhRKHl6OTgcLdONyNhsvRxf44slsOh2c4Fr05/PZFb7tbDY+LbRkWGzacPDppD8uX/0yOl2eh1Ywtbr++2A0PI9vpspmlOP+yffhfHY5De/bYvws/cnIk34sK20of7PFe/PZbJl9mvzsDca+72MfZb2xX0Nl8aU/+uPLUPHd2c/s2mJ5HRsznp18H/hn6BbfjQ2YD6bLRi8hpPSS0huuzkfLwaeL/on/fuVQ5F50vpyMwzuH88HAIWc37Ze8JovlfPZ90JuNZ/O0FP5G2X33tkiJHc/dlbPReBzvnM6mg7TQ/unINaLm8t5o7oAxmk1T0tyXtDsc9xceGP4d/flJgF1al/P+6ewqkFLk94/HkTiZ/QDf5rNlfwm+O24ZwO8BkuDK2Wy63O9PRmPPDDvzUX8cLoK2u79CiMrxWQ3zYL4cRBbL4ePYdjCbDJbza3dLoPLsgcB8NHLj1QrK2oZhPQcwljKyUGCfYV7yCiHuQwBJNWBoW4RRSh8YYWzDCBNFhN0REbQtHoSVCBGcmBIiqFBlRHDaBSIoex3gzQ4wjZx7HwP812Iwf3/8zetdRsb948E4jqkau2J3j92Hof/w8bI/Hi2v43VXTE7KXjoeTb9nz54vl27Ed/wr2f7ACc/ZMHHmxtJ113DQT05mE3f9avR95P77v7TYkbMP0kIizKQAXRQg2DnAqLVG790KMHfnXvpTgTJH2zf+Twuo3TeeNIaTw1NCwI+qQBepUiikNbjcV4CvW/B2VwxdYwRRau8CoZmj+DL5niQl7ATZct8DqUxi4U9hXJm9fVxFlaHQxbiWFIXWFXpC9Se+n6fHC//faOHvnxYvb3kbI0ifOZYxYPwGp87ID189k82Gs2l//GZ1FXA/wWO7WPbnyyDtrfs+mJ7ueD/DfT329nV2aX80jg+4b+D2khxR6U+lrTv4OVr+E0txn//1tUnkDTjx12O7sne7sfgnNCL9gssoAbAWaIvZ5fwk9J4MDOd6YjgIt6lwn+/ZG+FYhZRw14fZaLpcIdY1KhFaUUuy34YVIEsSwYzUNPstFYZiVuNQJrQ6C68RgmAj2RYUYdbM2wvappinCsXMzs4WA1RCyhh51zSzoLQqccYgGSYe9nq3v8V6x1tOK7lvb9iWUVtWZBSnbnv9lHIrb9wi27zEGTn/eGc8GnolNRmdnqYc0w8XxoOz5V2Enkh/uhF63ChsDdmyA0QJLcu16Djdxdotj1RZWIXv6Zj8z/a2u/3zeSrZTkd9ZxJMsio4Vhstx04aMXLsW/fH5XjUd6KPHM1m84F/5SLVfyeD6SK9y8uuuX/W/evNB/3l6Ie/rTebTGZTf+/OcjkfHV96Q2P73WzqCYP5iRsP921vMB/9SB/xd4rEsQc5mC4H82nf39/3bTzM3pUqWTKc9EfjLAaz7Ke6eaVs3Zff+sv/uP9860JzA/BuhaIb5WVR+lahqmzQRzC6WrqK3wTbKrjP3N1n41Smn7v7UnOwKFrT75lc9/Zbao3s5jEfgOcQ9SnhfP+N/9NaELcAfwH7ugR9zSpMNd7eVCtBX5ag35tdXM/TlzhAnHg8MEJlLaD709MHQvSzQaVaC5W5W7MpVCqN7NBo6cXwMOEllKqqCFUXKKW0jNM/B+MUE4tzH2HOLEziBmviv8zO3K8P88GpG7Olh9/+5TR11hbPBzbUPISelggUBa0do0b3IbkaaW33BufBLBe1+vzFOCOswhvJgVHvjaQOyMofuZM3wigvuyN5KPlWfyQ33i3C3HZuFjZ3WLglDsbCeRBKcqotExjGhieSCiGJUZpEJ6qtu6KESQyx0tm26W/8Dne1pfMS26sKFm/ZXXHI6kMP7sKXsKjvDhmDCHn7RYETsxIb+kKNg42f+0PAeKN4+cCJviUOQo5WPFkVmKzm3PXCTEtfKRhiyiInLzdI2aX6oAKrj6LXpxUKbtkKH/ABYpYF2L4J6Cwjd+cmyEJ4dhtdj+wCUcteQdtZZJ3ggCw2hKWthvT9gLZsKjeY+7+DHVNnGTyQjRPsmtzMKQOhNuK6vh2jKswY1s6IoRLP7m6r1jYM0xJGVRm2LgxJFPjRYj0bhtJCyJUWYrdNQ64UWz/brFChuxsx1GIjJnJCbY0Yven+jRk99dpj9/FoD/qqPrqbz6MYmI9MYQheoTBK3vF5Gtx+zm5zY984Vz26qHrqJvH03WbxKvVN9KWbu83YbNmOUeYWGodgZcCjS9tWq7Cb3W9GTMLV6gZTeE3jab6ChC843OtM8zWW8n+n3JSyx/9dzqJvED42c2J/GwU/+D/dOrgZo2MX91Xcd5jXhaU9x95DeW7nPoW9bCHsf6wg/GyF/kqYQ1neJATaRFXcIXFDlkV+jEO2lvjNJfy2IoVIoCgEG5uKeO6MnDzyaWghZivYze5J01gou7tEL7NI1bxCl+AuoHM3/VONzpuATyqAj/mmzhNuZMGU3ftu0ZxDorHLjI0PJmxbdNuC+aJ5S9TVzECoYg7+rUzSnddbbJNs5/QW7m/r9JYzaaqiTyX1kSbB9EMagE8aKGqT5WwrS4yyamuXbVzhPLmg1j1pnM0rHK5uCGJx4UwnAhIL11NFncWwOF6js4GJuEKC4z2HsMrcXLXKp+Do7MyHl5NB2qomgarflpcX40GtR9O509HrOZNG3rvTcdpfnOeV8l8+OHE3mPvbHfhI0yVmnfolGsO36Jhsbn3AXeeDq/J4/MdHMj+ciYFX53kTIOVMoglhea/u8+aAS/73kYDX6FfwdgVeWQj0F8H7sHF+Y241zV/QSh0CDez1VurkX7pYqRNtbWh+R9+uy5U6NKFUasKEtpwbjQGrBHcGNzHug1DMFNeZNjW4tVL1Rr10VVgFhohddz4Zl9rBCp5nlrVm7rQu8lWw40x4hUzlwsr8QtLavS60LYl5WxmBefXZnqTPVrQoij6b3BjUyriqjAU8nZmjsELj5vj5BrIFbggtVk8+kdiOogmUXgRG0PrGRpQR0NgwuqGxkadbFZDZPIGtXktXJLkllGjhDAWqpKtjXNm+emtChdGKcO58Q7PmwmKG7RVCC06opQkHmfyFlfQ1Jssa8ba45vWp8thLmZ01tsw/9xAs3xY2AeFwYwpzOUbcBNOmzHDLW1zpeOq2pf2+wZlbW5Xc0B3wH90sUWn2dvOpz1XIpy2RT/GajzVSn7fTTVAgRlGJPr2si+RnpQurG1tPHDX1TtvOE+mYC9JwokipG3Oj7zxRZG/fBWbrRa7F3NiCy+o4Vjpv3IiRa9ZirqvE7pBUWlx7GaV4a24lhbVk6uZdZ5pGmjCnbatbNVdbZi71wN1WX5aZs7zlaF1OxguJ/ZbMyS68uW53adpA7HfbKU0YeaWFHR2kJjdZdk350DlLIGkjX+bc7CXNU7uLuycWkkPuzpYKR/mUulnFFtdQF+6/Mxfnq9w3lpf4UEpxrZmWm3l5PT6kIu5bvc52aRGZzgurX/Xf3tYVBCsgwdZMg5KEQPeQ42KlWHciprCQkRZNgG52U6vc0vpViT0eJRal0Ya3Gtym9KZdNRTBRt+aAUHlt7kB6esFXrE2YTDSsqZhWXTiOldhmmENr8TNOqy4C3nh/g50WHkbp27Z8PHk1iO/TG6M7arWBrZOrY9bNEUgytap9ZTYm3YAFbITjtE2iYztfqsCWm8J098hKX8tqFeFRJ4X1BtMbVVviLtm7FFXQJ019ZNyK6iQMt1+GYksxt3XXUeiivs+moJ1uFHIPtIt4WmWP/FyE1c63Uq8kD9Q3BRebC6BoEmuCiVVoannJSTr1/RsxiConqG5q5RsbxFIS7BFsBGDgNOkHExaidMN2QOt7fCCD3/bKr3idE3Xq/Roo60zH2+ewWsuD3AAqmJWLfcGYcWlQcUZy46SeQypzwu+bUl441yem15yi0joLpOHxuk1wAs3JBbcjOx6LANE6oY2eL4P7N3tEBQ7jRt8rYXDebqX848BKr7FKlKHHecOEmWskpJqIfCoO8cwpzFBRaNRr9j+pnBqBGMJl2mmPNGEFA+jqAHsWmBqIq7XWVTdnbR+cskxm0gLq3RQ24ni0u7GLfIq44yBIjBMIrEtoQvnB7FGqN1Abkysrbi5vR3sbmyxdnvwZJlNB0Ef70ReYV80uVVnOG1gIm8DM+q8sBUsL85CNz7ZSMmEgllzzFuquHNZ81lyXL9ioKqTSKfzbkp4/jCYT5wSWjRzEsrnLcDjXD1mAou7u+XulvTRmK02hy00PFwjnqvQeqUHxnsJoTnDF+M2+WHIoalb8IzhLg2kbY4j/LmW6TbmTRvEvP0QXGwuFNa8S/M5rwIPx3MUQUwsqlAYElPtQ2LlJbllTZAdEVa3KitfUPh9lJ4P3XC/2MIQ3Pu5YRXDl0Pl9lhmVMPlpf9V48L53ccld2bucPptvR5NT6POYsS2zYEaLbosX9dS6rKKE9SKwbc77ejhC+ryeE/Evc/jeE+Kj9DB9v4jO94zz+ZpItLz45TpVnECpsHaylqx81jWh25o8WdrjcUFNg+Z2NymKBWAqNxGIlU5vi/S5sTuWO13GzsGboGL1VXVnillXfZ53p8uzmbzSdMV9fldWeVqNOKzX6NcAUfeXJ3cC7BEVYbfq6R5TJJGiM1tYVMBiPrd5zqRNHEXhLLYyNzXzEh7lTN3lDM5Xz8SOaOeoJPKTWGCjvBktX0+rTgrOXpL6KhkklA4xdaFp6QaBDOdtL7wH0eTvg+9Vfmah96H+DBbjAImj2fLpXMOyrJ6OUs3qvIl7SwuUsM1Lagfv5yNfnrg7oaX7Z32l33ngmRf2f7ix3CL7f50FWC9D7+/Y1+vd3n/y5+kv0dG777tXB2Mdmdfv4yn/d8/2oNvR1dHvYPh4C1dHE+P7MHknJz+vqMOry0/5SeXp7+OLo/5H9PDXwdXR3s7P07416l7nvW//M0/Tqz48Ong6mBvZ5iWu5eW5d79x+id+PfzYvih92Z5+Gl372Ty9/np27+/H/x+enH6djj89IWef2V/9475x6Gjz05///Pq/cj8OHXvPJyMl/9+OR3/O7HkcPLux/En4+4hsNS3J8P+F1d3cOc/v96MPoz+/TZ4+0Yf9HbM6dsxOX77l3vq89t9+fWfg+HR56sfq6uxrIO9n1f//vPn7OD3P6///SJ/fZ3Y6+PPbux//+P8ePpu4Wjj//bIz8NvH3+9+3ZED3rk6vDbULrP7F3v+/D4yz45mYzFf/d2Lt/tfeTv9g6474+j3o677yN59+vj9bvrneXRSND0mU/u8yfx82gvfX508Na14zsZvv8krt7vHfh7mXvm8v3eR3nw5gpep+69P99/fvPLXz/6fEQcjb//VHv/6vr+zL1n/P3Dpz8uXH2nX7/88eN031y7cfzl2vmjz/5aHjvI/svGZODa7vFwwv+8PmbL8eGXnxfHk7+//fvPjj2Yuue+yO/oubfjy69fLn70v4hK+te3+7/6b/evTyb70r3/8vTLzwWkn7Lxd4cIj8PRwe/vXF/a+VdXh4NfOx5vKTa/TsaL473s2rtff4zcnT/ysd67+vH1l5gc8PPz97+uUnx+GHqe9H8LmgdK/0o/+VYFdCrlgJAKBdTC0aZCW+WF6WmFgqoQsKp1TGQbT+IWRCIzusqZqpKlXQjPBlvNvwrPV+H5Kjw3LDzZR/ruy1/+2rMTnovZZXfCk96ncGy0bP31XLJ8kr060/i2+fd2s+wotSU66Pd6cjeViRFWU2INU9LYQiyU0SQc2k3cvfnq1NYT8oUlf8WVGc2PCsHLY+O6qO6yW3hhOx0R5i+7yxW+fd/gVz58UD6MIfnmfFg8yOKlsWHnOWZFLmQh8bgzLqxIsnkefPR4ksYiG91lV8wOWKuIeUnWXMSeb8kZC1JrpmhuY+a5/ejmtQDeYHuTxx6W5cQ8krBsXPfwGll4jSy8RhZew7L3HJbVrbOiHlNYNqZJvwrPV+H5Kjxfw7L3HJZtLzzvMywb1+W+QEf0vrYhrHJEGy+lbeVoJoQZS5zCE7RwsgInKjGEC2UYMcQyueZuoOkJDUQQoZhgWgvsSnIpE8uVoIqm0aQ1wztxT964Xmoj/qkpwXyTC7oLWNP1YOtuX5lbl9DlO8ZuekE3k8pBU69+MGoMSawAP+vu7KxVpecdI+lEJxz8FHHV4QJv3SAnbbPrTTa44EHwAtOrRstSrKhHTXNt1WCDoccWVZLk4VakUVOOM2dL0soH3l35KZ/i5E5cmEaObzwI75GvTsth8yhXp5kGodJ7X53Woss2vTqtoseqwqEolXzVdTFv3BO2F6lpueNuoOriZ4Ok8uIM6H8HNRvnNUsY72C3u0auTripxstpmjXen58EW9yLyHyRBqmNeRR4Fi7CVg+gqSjHi+9wTErHiRnI47zCz4pbsHWyoLKAr8PRNJOvO74/HUwaneCY1WfFDhx0wzPbYhGh7t6PLy8cDaqjyw0gYyvUQhTgXa/eNGVn/d0Mgod4PL0e7FlGza07At0nimTZAOwIRRWQabCgo43FfB/r1ATXiXHiOf4r+ItV/ed+ktUDRse9pDuPl8UzKR8gPLb+rogMhiJqtietinA2NRYjyJqmVZDCWImbrMJqZ7+2iOvqwb41wJXPVAkmdf5P+Y5oEo1om2HUsP51sY52j989X8mUIxqfLgYnDhGjRVhY2duKm9a5f99HU2fV7C+vL7xWmp2ttW1Qtc9XNnMLZmetS1ml9Wbu7rNxynHn7r5U7a27hZyp2xioXjWowjiWN3BmMV+oe1FWlQn66FUD3vmoyiJjVUZ8Nz1WDj99cPCZzSf96YkH+m9nl9OTFTtczGcnA2e3pF+SJPnPy2ADUzPa9aEDcY+wtw1SLx9rOsCW81B76QUZe8td2fNf09OmJUt/xU5b0cyK9mM0uNqd/VwRSXo5+50VQuD97s3TxerudA8g923Hf9tPf11dXfn/31zx9L/ZPK3fviszLXQ/VNgX58aESV/QDvg/rQHvDYv0ULOUuBwtvYPjbjjsXw/mKYGmlPQVK3LN8xf9tK8Y8Yyzao3/xfWZ/7NqsYNKfkM6Cm5s3Re5z1f3gFuOvE3o2p3+7tH0pW/SW8lhFSkroOe1hftGU5IBFMNXJfSy52VGoKu7eiL9bMNrICW7uaft6tFQTFYpb067L+kre9lnnREUKMWuaufKkqAsAx8B1QgEAQkcEGJZHJSFXs9WXwIhVJiWKhzLosWy4s0MNDvrJE1AVSGhFyga9KuGj2TFMzASGoxkDw54T9kSJaurMnUE0KKMQA4VGK/8GhwDEt4mitdioRzgDhFgJ+Oas9Xw9cDn+AiEnYIECnrUhLIoeAukBIIoDUJGCGPYU3CssmvhkilfgoAJuJC2+HxopQSwRuCTpg6vUoOuhBDPCIgdpALNQxwkRamu4RFe6sRQPOyqDHaH4RoHQxEwLGGPydWAEQkxDCAUCUBmxNETdZJDGPASOHoC9EtoXZBCAnzrGVgWgEXoKkgoyNFwNy2T4huyd1MG65MVTgEv4FZTiQqy8CEJm2fhK4BIj5RQLw36vScAMHrUlPuJGvgKKB6oBQAJBfUYZOPQaAspspYSx1WCGrFQEJTGDMhOIiD+GBC0riAoYxkUjIGS9QfjtRQoRnqYBEaa4BcBRoyUUO/ABAJKPWZhY1DTwXAW+suiekESJ2CcwrdYBBw7DoRSDoKsEzmFDYDw4FDeIkxxYAwUOJOj2w24FkUL4JMex1iHnMw17IlQuIF1hYaBqOK+oDsrmpEVJwQYDAn6AYEyF3CIFEYjCEoGywtCHRohoQ4ZIqSCdYAYPpTQMkOkKPEpJGUsJCtamyFVQgygfughnRNIQRsSSAHti+owXAsFIeUJGZcgfQu5IOjoeC2qV6TRoexHRoBA17LCJbJhkZkB4UaQZSIhtyA7BlEOlS5f7CmgjQslQVsLvV1D5EsoOHvIpgstxAYg7A9kNKKO7SFDE40GskrRECJLViDWRtavAEYBQQYzwg8ysjHoNLo9FASFoACQiZa/gJQwxFUkXvsQosgypafhaAoG6wDlWODvrN4G9aeEzTSoQ6HdY6BxKiS8hkRSYAkDzTAkrQxgHQwBA24LlIJbh7rfIFkDr8X6E1REUBrQaDLhGjRBQqOywnmQbvgishQNEJCRJGBLgx7jAGgGQpBDQRU7LqgfiEHUPUj3GfDWqDCDjVJF0rUPoeJkmdKrIjH4ELIVLKQgWyGiBBi9kRSgBYU8g/asRTYMcgosMrGg14EpukwJhg80lg4xCTJDgQQHvVAJKK0whZUpoU0UFoc7AooS3Hm0oq+rkKAgSZbHm1UMakahcFB7CI3UQlhnNaKw/xHgsV2PuIRWcGKFA4EED/Y6EP9QqKaNhC9CfVjhIv1Kfx8hz5dCIw475aHiwZFG/YDsASjjUZNCpAPfrqElj16RKbFCjYL+Qv5NUJTIXgfCrEABwjaPUmnINChMFV5kYY2DdQy1YQ81gyNDq0Jsoj5ClB7qWPwQHAz0CjSCuF4SKk/UDAkgipuOKai/MAl2Mn4RHJh6fKUATAvxUeHNBmLF6h4YiFXQ7ohcG4NkHF3NBgGxJbLJQwODiI82PHKGkeGvYCfaCkro+U+4JKgO0Juj6uuhOgb9ikxsDiFEISKRuqafkOWLStLQVsrfrKHhg2qqoSpmKFSLKLHNuCTYe+jNeW+jmsZxQeEUNIpVo/7rSIEWRgzbyJFIQxjYnWjgq14QKJ+UrSsJuRP5m4NQsRAoqBMqNDCm5N2JSoJTB/jNwQrpoZpyqEmRb8XhwGAIBcon1Hu4JNTb+ZuRnQBrqoCZFs0YU0EJbe7hqxW+L5JitKJOYRzuU0zJ1T1QTAkYyubIqRRA1kZSCKfAWAGKCnFbLi4YFzCKE0iEw3gph+4kh2EeDvVBjB6Ft0MDhiMrH0TMCKxKbFhwTzhEcCVJlkkRcKjArH4w1hcpmfqDVnWkBAOGQfWXeWWEwYkX5Lky6JQJ6M1EOIYBgLY/Q4I11AiJYWCYkEOGRh/5pxQNMnTooKhC40QoCjEiv5nqMimrBIUeKYfRf2j+RUroSorcLBinpcinNGA4KYP9ld19iC/GtqPIH4hdEYoCILDDKIwyCWTAU2gMwhhvLC68CFUWBroEHOJgmYfiUKyJwtGXULpSCHIJZVaPQnEmYWydUngt1BiKEomihaZ8tywXnd0M1YyM3QRGG8ZeCZqXgjZtqB8M6Pag2IbRU4JmnyAGUkLUHEEowBlrGFksUJB/gijBDQBNgvOxBAZvFZwdgFNW0SwR4JGsYZqWCGHqEcXkoO+mg1QHfalhuBtCR0MLqwelqoEeYJhjQ6HD7BIKscPgNqL0wCigwAkGsoEoo9B/N5A1kZvbg64xFiQw2yEKH9SSKGKg2jKI1Q18CIo5OI8WYzeBzTJRGy8GaQ3Fr4GZFzAy0YMxu1hQbCYMCcH4Q89Ce5tCg8zKcr3CIFiECOgx2nANxvIsbEtUSgySArNDdWVhAIOJMiU2E+WGQHkKp+UiJbwIsoKFWiGo8p6FiizT/LinkKFgkKqAHk81iZVJyAnHJA41BhpIGG6NlMiMukzKRhKZXgbMRxNuy5Ro4dSSqigKUnSZggyYnoXGjwjXoFwXMOBmJayXgOafhZFFOEcXKHEG30LbJijaeDFIPyiQLWR3NIFvkV5Ds5oWKkiJOAQqEIm6IBaEsAXURZw4RdIzJCdAzjVw+gKp/h6cfYjFhbGj5RoHoCLrFNcu80wkjOprC5oWioCzK4UZU23g7UGhQeOnimJQQRKSYMfGtBYYp5Yw9KWRLJGq/FBQYbb8ohCihL6chro7RkgMeChGNEPTUUQTWnIaarkYG9CQxOBD4RUQqCjCB2fqYnJWvBgKCtegVaag1alZuYhoH9BSQTHDypaLC4YPzE7C874KCmTU8QoGbiWM2itkSWAS6kpMgipeQv8iqxCepoeJXnlBwdqE7ZRAnwcKkdCykJgZoI0HXxgDDsEYh0ILz3xDw+oQgQ6RoumKJsVhhC/6HKE/oJ2K5yQltNfRtLSEFRMo2wM5L4FDcCoG5F8kZ2FKVqRQSInF6XK9oOTH/lgoTpYpQYcKCS5iLSTgJCR8qjAXD/utB8MrBM4JB/8T6ywOtVksqMIDh1PyPRj0IDBDBE+borySSNLwIRTOyRpTHx0KUzwMcrHGdmNgIYh8mDcWGThQwjWgaUgMzxrIQiFwAcWjRIYzNJAkGECCcq0CnxAOQ9pQp0UbTIG7o7bmEKkSAghZOVAqEJgLFEVEDwEMtT0AEQaCCUxEwP2K8jeicEY1QvI/60NkFWo0EYjaHtQYDMJFfRhsa6QpoTjroRgWnBPDlr+GSK3C1H1GStXqHhgpZVDKxtykEOQtYBnaBwpaDgi2wYWnh7grwlU0aR5VcXCNgMyOtkEw9Am8ZmPgVMPuR+hGA4Nisti+QJl2OJSARA4KSwiImNgPh1VXFQYwRj1kHGh64bzLqI97KDgtIU55YFiovVA/yBjhR1hHDA6zM1AidRyVUBuFRjHWQ0IUoHojHxpj7NcRQ/LGBOjBjJT4AiTUYKQrxsZR9Euh7B1spHBko0BHE0aV81kVPFugwgBBZ0NJeC0IMR3dzCDuLHw3inQF2ELrLMg5dVh1VfdQi2FKG8FswQHrxGs5e1eE1iwcbgrrGIAQ2hsGLUIgxP0YMpaR2IAMr3gUAAb0c3hrD5rIpBIdtwnMsFZpWEOcDJb9dO2XJ4fVX6vVU34F2PuLwfRkPLroz5er4tBjoNRAzh73a+HQfiysvH5zP/3ZzEI/fFAD3CJIl5f5UdN6mV/dhiu+eZfzhbt4cj5bDKbuw5lrLyOT/s/R5HLiaz9ajI5H2Vn1ZOm307jwmyaFJZyng8v0M+n7Bc1kOR9lX0/Sgo/Ho+npom5V59hvxpFW49vZ+DoZ9SfJ5fZy9v16lvRPkm8Xrg3ZkbceL/6B1RpF2I3lHV3uvkb0xI3iYL6pVaIBZH5Tj3Qsdvsn34fpJggVG3jVHcLSfLfNFgtNmU0s/MGLieP+/wCfPB5SiwAqWwO00f4u8YSBp7Qim7NCJ1YwedwhsPu1vPzpruV93dr7dWvvZ7O19zM7F6FCXuayubGxw/Hmc5Tril0OKpRLJ4JRlATjwfTiclmSjk9su4kWCq7FgNXvYCkqBqgbzSWfoKovbr4SNx2Cql5sqsPUq6p/VfWvqv7BVf0zO8WjSnPIGon5OFW9LgnG95fLF6brm49YHgko63q2GdXF4sbDGz5rovY4iXSXyeK+kulFcPBKqyFAW7AWB3NROpql1ibZ9METPDJHPHC2ELhperREsRwqOC6ou8MjGCnHNOq27I+781dtzE+23rAto7a8J1B+Mt3snzzB3f03uE9vfvBI3EMzxqHhPr20Qkbwelg2lxHiXmTETefRtNqePUqbeET26gyl2pG49VCkfM+/TYsFEdm3ONJt5UKpIL1BudDAAXq6h8oUjt7N+eHm0yRMJ+pZ3yvrxYPk4QbMNYfMb+gsqNhra52MfeejoAwaaL7uGfDFXcEFKfDw2qzX+PCGPy9XBzZUnQay0ptBgY9H0+HlaOFUYja5OJ4NvXa8ff4w3XTTb7m57/4O+s6GGyYX/enSQWA46Ccns4m7fjX6PvJ7LveH2eM5wLNDzJ/n+RD3bSQwY26YQaSaVFHRQY4VfqBsL8aazCcyKm5XGU/ycEc0UYwOd6wXpO1tn0bSNApOZMhQ3lCa5sclY2G2HQMIrQRrAs6qJwUxy2lCjNJE+lQoWprBbnr+I7M2YYpQKhVRlquSHZVwZa0IFYnnlbR2twpeGy6lkwMg88STu5whRS9+ZuI+P0aKnOQgXV2M+rl03NR56oXVHh61xl7h84GrXojne9CHYwjc3XJ3S3qhu9UmCaQme8O15yz9aWufwAwkWslhK5m1/nTFXU0UDGq1CfjRqBow/NBZY/6d80FsT/DTkyQp31d6rgF2nobcz+V5yc1sqhEaBb9uOhO4FOta8xhgVqEnGmqJFgEvV2fpxK9ysl44SVw4BlgImTBjnfRWTMl01c86WoAWTuhdN6xWiLcUSikzWv0hKxuw7v9OOTPlpSC2kaRvck7bb6PTwXS0vP5P1bmCjc95W88NyAQLdgTYqx/QlR+gtEKWPrZYJMd+QDmQeK9+QJzZuD3ZoHHHtE8eENhVyhvbfTJwhbFn1u6AVeet3wX30sQqg6JhE2ldIvfjamKcjFurifZpNJE2bWJFJkpFs/Mue+TNbiCg3COji4U3TNtGuQ3xf7YqZ7Zr9cYNCyVyPVJypLDOq/Fw1gg6JVQKQhQT1Fl1hlLsoZjEKuqcbq24Tz+oSD5QiTHGMuq0s5ZGRlGMjhtPjDR+/QqVhmumRfsc94pxbZCf/YLH1SacW38mtnT2hNYKGxEsYZJSbY2z55mOSQTwtGL3OOfSCEEpcSXx8qi6W4gDh1A0PUiT2S4GVbwO6k2GTmKs0FJSrbkROkbaYoSYJMoKKxwjGsOsMWXTkCeCaOFrboRhq0MB0cHzSQocro0TCVrq4imV6w1sg5zUFzywbui0YybidznlklCFDVqeKCelpROiRArlWLciByyRlikitNVeDMckbZRMkEhDnaRXnmMFK+aZrDeuLVJnl24gB79m/tl2I1ydvCfKbt8KB50OOpjB3ub+ySxOu0cSqiXnTHNBmOtao1hngEg5XTjuc9xMrCAMAUI72cuUMU41K8l4WX57OChJuJBO51pDqgQ4S7RVyjDDhGVakjWWnlUAoir2/YwBIc1teDgF4YXF7DINL3SCEZU47U3c+ClCKFMcW25UJMbxueaOroSwugokhmjCiRMYTqsIZStscC80lOVUUU6ktrwTLd/AZX5OGNnWerNCY2UAEGaF5FYY6+Ow1WriYeRCgxjCcxpzyh9MLphULli/iEYwJUghj8CfZq/cABOlne5gUj4aucAbBGGeE0a2qdqwYMj9BucOMEWpoP6cD60LqkImfkttql0FiHZcX84teTC5wRtErZ4VJm7XFRsTHDKhlhOiLPGJHipf+hBnq51BwZ3VqYmrjLURAo9BcDSI8T0rkFB2P24ISaSigjjv07mk0vkh2A2hPOFUSul8Ssf0SvDyKteHExwt9m94Fpi43TPdmODQiXUKRlFjnWXB80VJeQzZCFcDroXhionIrI9BbjQINz4rjFCu7kVuOBNUGqOd3+kND0ZxNoZKmBDO0ODCCQ9qqrwUv4GX5YZrTZlUsiJMyRKudJoPqLRHneoCDw2ilM8KD+JWOGxMZjjdIYVXCJIQbm16yiFULc5L4ZZzwvxyWs5VlWrhhjoUOUdGW81jMh0GCXXGjA+SEeEMWypFFyh5aTFPauj9BD1pQrwa8ZaGtsQqLDa0Exvco4IqRkhlDPyBxMYLi3lu21vxsDmxQRJLnY/ijE0uLYka/DGIhZcW1bwdBR0Zl65Y6Uw+I7U2oiAUeKKcdeknQ5yPIlW6qfJjEQsvLOS5/YBSQSTO+2Daex9+x1ZO24PkYaSGeGkxz9tNzo48EO4jmoJb5swXbfGaJWdoKCosc94JUX7gH48xIV5YwDO94VG6ICpx0kBS90tYpbmpioo/jNBQ6+ccbyzpWohy/2wsqVM0CO7Vpeuqp5GRHHXUWnnl/Gk0sfFGhRVNFE+jiQ1iBbVNrNt56pE1sYH32yavPO+yR97sBjL42WQ05mP8/PPKRQOv7QWP69PMK5cNvKwXPKhPN69cNvCWXvDAPtm88rj980vxgtfLK18DEE81r1y+sHSOzvLK22PkyeaVx9jKS8HIennlLQDxBPLK5QtL2egsr7y9XHiyeeXyxSVsrJVXvo7f8GTzyuVLy9noLK+8PUyebF65fGkpHevllbdHxBPOK5cN4oPPChOd5ZW3h8lTzStXLy2pY7288rVM0KeYV65eWE5Hd3nla0S4nmxeedz58sWgZL288jUg8UTzytULi3l2l1e+1kzJI80rj/NkryjoVio82bxy9cJCnp3lla8hFZ5sXrl6aTHPtfLK1/FAnmheuXphAc/O8so7d0EeS165+zqf+S3nc9pbN7znR7NTv3H9m/8H

Figure 1 – Relationships in Terms of Predicate Functions

Implementation

The record structure of a relationship in an information model should contain more information than just the predicate function, its arguments and the transformation rules if it is to support effective Architecture Modelling.

Like entities, relationships may come and go, and they may be real or imagined.

For maximum flexibility in expressing the mutable nature of relationships therefore, they should have the following additional attributes

  • Temporal validity: from an initial date and time to a final date and time
  • An indication the real or hypothetical nature of the relationship (e.g. “Actual”, “Hypothetical”)

Notes   [ + ]

1.Not forgetting other constructions such as, “To the orca was the fish thrown by Sarah” or “To the orca, the fish, by Sarah, thrown was,” “The fish, to the orca, by Sarah, thrown was,” etc. that all embody the same relationship between instances of entities thrower, thrown and catcher. Complicated it can be.
2.See Predicates in Modern theories of syntax and grammar
3.i.e. ceased to be in the sense that Fido is now an ex-dog, or ceased to be a dog in the case that Fido has been magically transformed into a cat.

Pin It on Pinterest